CNN-Based Projected Gradient Descent for Consistent CT Image Reconstruction
نویسندگان
چکیده
منابع مشابه
CNN-Based Projected Gradient Descent for Consistent Image Reconstruction
We present a new method for image reconstruction which replaces the projector in a projected gradient descent (PGD) with a convolutional neural network (CNN). CNNs trained as high-dimensional (image-to-image) regressors have recently been used to efficiently solve inverse problems in imaging. However, these approaches lack a feedback mechanism to enforce that the reconstructed image is consiste...
متن کاملAccelerated gradient methods for total-variation-based CT image reconstruction
Total-variation (TV)-based CT image reconstruction has shown experimentally to be capable of producing accurate reconstructions from sparse-view data. In particular TV-based reconstruction is very well suited for images with piecewise nearly constant regions. Computationally, however, TV-based reconstruction is much more demanding, especially for 3D imaging, and the reconstruction from clinical...
متن کاملSpectral Compressed Sensing via Projected Gradient Descent
Let x ∈ C be a spectrally sparse signal consisting of r complex sinusoids with or without damping. We consider the spectral compressed sensing problem, which is about reconstructing x from its partial revealed entries. By utilizing the low rank structure of the Hankel matrix corresponding to x, we develop a computationally efficient algorithm for this problem. The algorithm starts from an initi...
متن کاملMaterial for “ Spectral Compressed Sensing via Projected Gradient Descent ”
We extend PGD and its recovery guarantee [1] from one-dimensional spectrally sparse signal recovery to the multi-dimensional case. Assume the underlying multi-dimensional spectrally sparse signal is of model order r and total dimension N . We show that O(r log(N)) measurements are sufficient for PGD to achieve successful recovery with high probability provided the underlying signal satisfies so...
متن کاملShrinking Gradient Descent Algorithms For Total Variation based Image Denoising
In this paper, we make some observations on the chambolle’s algorithm and projected gradient (GP) algorithm for the dual model of total variation denoising problems and propose a shrinking gradient descent algorithm (SGDA). We consider two frameworks, SGDA-1 and SGDA-2, according to the choice of shrinkage factor and step length. Global convergence analysis of these two frameworks are present. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Medical Imaging
سال: 2018
ISSN: 0278-0062,1558-254X
DOI: 10.1109/tmi.2018.2832656